If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+10n-150=0
a = 2; b = 10; c = -150;
Δ = b2-4ac
Δ = 102-4·2·(-150)
Δ = 1300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1300}=\sqrt{100*13}=\sqrt{100}*\sqrt{13}=10\sqrt{13}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{13}}{2*2}=\frac{-10-10\sqrt{13}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{13}}{2*2}=\frac{-10+10\sqrt{13}}{4} $
| j/28=19 | | 8-x=9x-10 | | -2(-2x+5)4x=-3 | | -6r+10r+8=-10+2r | | q/29=14 | | 4d+4=42 | | 3=19-8m | | q29=14 | | 3/2c=5/22 | | y+11/8=33/4 | | 3/2d=5/22 | | 8.72+5.5n=1.8n-9.41 | | ∠1=3x°∠2=(2x−25)° | | 2x+3/5x-2=4/5 | | –20=2x | | 4-3(x)=11 | | 0.6/x=9/55 | | -3c-8c-10=10-9c | | 2(x+5))=16 | | 2(4x+8)=8x+8 | | 10b-45=3b-30 | | -6q-4=-4q+6 | | s4=7 | | 6(2x+5)-20=82 | | 10x-10x=10x | | 3y=1200 | | 4k=80 | | 7.2u+8.37=-8.8-3.29+5u | | 5/6=2/x-4 | | 27x-16x-(-3)=58 | | 4x/5=36. | | 80x-2=105x-11 |